
Evaluating Synthetic Code-Switched Data
ABHISHEK VIJAYAKUMAR, Language Technologies Institute, Carnegie Mellon University, USA

Multilingual code-switching is the practice of mixing multiple languages
within a single utterance. Modern approaches to code-switching language
tasks rely on fine-tuning pretrained multilingual language models with code-
switched data. As readily-available natural code-switched data is extremely
limited, current approaches involve generating large amounts of synthetic
code-switched data and using this data for language model fine-tuning. We
seek to provide an evaluation of the quality of such synthetic code-switched
data with respect to the objective of fine-tuning language models. We exam-
ine an existing benchmark, Microsoft India’s GLUECoS, containing several
Hindi-English (Hinglish) code-switched task evaluations. While GLUECoS
indicates that fine-tuning with code-switched data can improve task perfor-
mance, we observe that under a more robust framework, GLUECoS does not
provide statistically significant differentiations between many fine-tuned
language models. We demonstrate the difficulty of differentiating between
models fine-tuned with different code-switched datasets using GLUECoS
and propose modifications to make it an effective quality evaluation for
synthetic code-switched data.
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1 INTRODUCTION
Multilingual code-switching is a form of communication in which
multiple natural languages are mixed within a single sentence or
utterance. Multilingual speakers will embed words or phrases in an
embedding language into a sentence primarily in a context language
[Bhat et al. 2016]. This form of communication is especially com-
mon in informal conversations or in informal digital contexts such
as on Twitter or other social media. As code-switching becomes
more common, there is growing interest in developing language
technologies capable of processing code-switched data and per-
forming traditional tasks such as sentiment analysis and question
answerinng.
However, existing monolingual language technologies are not

equipped to handle code-switched text. Multilingual language tech-
nologies perform better, but still produce subpar results when com-
pared to results on monolingual data, even when using state-of-the-
art BERT-based models [Wang et al. 2018] [Khanuja et al. 2020].
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There is thus much research around improving language technolo-
gies for code-switched tasks. Following the state-of-the-art for
monolingual language technologies, such research focuses on creat-
ing language models for code-switched text which can be adapted
to specific tasks with different head architectures.
Due to the lack of readily available code-switched text, stem-

ming from its informal nature and comparatively low usage, it is
not feasible to train a language model on natural code-switched
text alone. A common approach to addressing this lack of data is
the generation of synthetic code-switched text. Using a little to no
real code-switched text as well as resources in the context and em-
bedding language, it is possible to generate sufficient amounts of
synthetic code-switched text to fine-tune a multilingual language
model into a code-switching language model. However, it must be
verified that such generated code-switched text accurately repre-
sents real code-switched data.
We implement and adapt several methods of generating code-

switched data and evaluate generated code-switched data on several
commonly used evaluations: Code-Mixing Index [Gambäck 2014],
self-BLEU [Zhu et al. 2018], BERTScore [Zhang et al. 2020], and
GLUECoS [Khanuja et al. 2020], a suite of task-driven evaluations de-
veloped by Microsoft India. We adapt several tasks in the GLUECos
evaluation to provide a more robust and more effective discrimina-
tor of performance between different language models. We focus
on the Hindi-English (Hinglish) code-switched language pair.

2 GENERATING CODE-SWITCHED DATA
We classify methods for creating code-switched data as either sub-
stitutive or generative methods. Substitutive methods involve tak-
ing monolingual sentences in the context language and replacing
some phrases with phrases in the embedding language. Generative
methods involve creating new sentences without explicit source
sentences.

2.1 Substitutive Methods
Substitutive methods can be defined with respect to an overarching
framework consisting of 3 steps: selection, translation, and recon-
struction. We implement several substitutive methods by imple-
menting components for these 3 processes.

The selection step involves choosing tokens in the input sentence
to translate. Tokens may be either chosen as individual words or
as longer spans. We implemented two selection methods. The first,
token selection, randomly selects tokens with some probability to
translate. The second, span selection, randomly selects a span length
and section of the input to translate.
The translation step involves translating each selected token or

span from the context language into the embedding language. We
implemented two translation methods. The first uses a bilingual lexi-
con to convert in-vocabulary tokens to the embedding language. If a
word is not in the dictionary, it remains as its context language token.
The second applies Google Translate [Google 2022] to translate each
given span, taking the most likely candidate for each translation.
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Many foxes often chase the tall dog.

Many zorras often chase el perro alto.

Reconstruction Module

Selection Module

Translation Module

[“foxes”, “the tall dog”]

[“zorras”, “el perro alto”]

Fig. 1. Substitutive generation process

The reconstruction step involves taking the translated spans and
incorporating them into the context sentence. The method we used
for this stepwas replacing the source spanswith the translated spans,
then removing all punctuation from the sentence to normalize with
respect to the lack of punctuation produced by the translation step.
We note that random span selection with bilingual parallel sen-

tences is the methodology used for code-switching pretraining by
Yang et al. [Yang et al. 2020]. Xu and Yvon’s method of generation
corresponds to random token selection and replacement [Xu and
Yvon 2021].

We also evaluate data provided by Akruti Kushwaha from the
Language Technologies Institute at Carnegie Mellon University.
This data was generated with a machine translation approach to
moving between monolingual source sentences and code-switched
sentences, where the code-switching language is treated as a tar-
get language for a translation task. The source data was known
as the DoG dataset, and consisted of several paired human trans-
lated code-switched and monolingual sentences and many unpaired
monolingual sentences. We worked with machine-translated vari-
ants of the unpaired sentences.

2.2 Generative Methods
Generative methods train on some amount of real code-switched
and monolingual data, then produce new sentences which do not
correspond to specific inputs [Chandu and Black 2020] [Samanta
et al. 2019] [Tarunesh et al. 2021]. These methods often involve
neural generative models such as variational autoencoders (VAEs).
A VAE is an encoder-decoder architecture where inputs are mapped
into and out of a latent space representation. The encoder and de-
coder are jointly learned to minimize the reconstruction error of
the training data. By randomly selecting new points in the latent
space, we can use a trained decoder to generate new sentences. We

use the VACS (variational autoencoder for code-switching) archi-
tecture, which encodes sentences into a 2-layer hierarchical latent
representation [Samanta et al. 2019]. The encoder encodes tokens
𝑊 into a latent representation 𝑧𝑐 , then uses both this representation
and per-token language tags 𝑌 to create a second-level representa-
tion 𝑧𝑙 encoding the language switching behavior. The decoder first
generates the language tags 𝑌 from latent representation 𝑧𝑙 then
uses these along with a latent word representation 𝑧𝑐 to generate
the tokens of the sentence𝑊 .

Fig. 2. The VACS architecture encoder and decoder

3 EVALUATING CODE-SWITCHED DATA
We classify evaluations of code-switched data as either intrinsic or
extrinsic evaluations. Intrinsic evaluations look at statistics com-
puted on a corpus of generated code-switched data. These can be
compared to the same statistics computed on natural code-switched
data. Extrinsic evaluations consider how usable the data is for some
code-switched language task.

3.1 Intrinsic Evaluations
We consider 3 intrinsic, or distributional, evaluations. We further
note that all 3 evaluations can be easily manipulated with rudimen-
tary substitutive generation methods, making them unsuitable as
reliable measurements of similarly between synthetic and natural
code-switched data.
Code-mixing index (CMI) measures the amount of the less com-

mon language present in the code-switched text as a proxy for
diversity. The CMI for real Hindi-English code-switched data is
approximately 25, indicating a roughly 75% to 25% split of words
in the context language (often Hindi) and the embedding language
[Gambäck 2014]. This property can be set explicitly during substitu-
tive generation, e.g. by using a selection module that selects 25% of
tokens to translate, creating highly unrealistic code-switched data
that scores well on this evaluation.
Self-BLEU score measures diversity by treating generated sen-

tences as translation pairs and measuring translation similarity
between different sentences in the corpus [Zhu et al. 2018]. This
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property can be increased by selecting very diverse source sentences
for substitutive generation. These sentences will then maintain their
token dissimilarities after substitutive replacement of several tokens,
creating a diverse set of generated sentences.
BERTScore is similar to self-BLEU score, but uses the contex-

tual embeddings of sentences instead of comparing tokens for ex-
act matches [Zhang et al. 2020]. Similar to self-BLEU, this can be
increased simply by selecting more diverse input sentences with
substitutive generation.

3.2 Extrinsic Evaluations
The motivation behind extrinsic, or downstream, evaluation is that
our primary goal in generating code-switched data is not to create
data that is similar in distribution to real code-switched data. In-
stead, it is to help train a language model to perform code-switched
language tasks on real code-switched inputs. Therefore, even if
some data does not share distributional properties with real code-
switched data, as long as it is useful in training a code-switched
language model, we wish to rate it highly on our evaluation. The
natural way to perform such evaluations is to then use the generated
data to fine-tune a language model, then use the language model to
perform downstream tasks.

We construct an extrinsic evaluation by fine-tuning multilingual
language models (mBERT [Devlin et al. 2018], mDistilBERT [Sanh
et al. 2019], mRoBERTa [Conneau et al. 2019]) with a given gener-
ated code-switched corpus, then using this language model on the
GLUECoS benchmark, which tests the language model on 6 down-
stream tasks: Language Identification (LID), Part-of-Speech Tagging
(POS Tagging), Named Entity Recognition (NER), Sentiment Analy-
sis (SA), Question Answering (QA), and Natural Language Inference
(NLI) [Khanuja et al. 2020].

Token
Tasks

Language 
Identification
(LID)

Named 
Entity 
Recognition
(NER)

Part of 
Speech 
Tagging
(POS)

Sequence
Tasks

Question 
Answering
(QA)

Sentiment 
Analysis
(SA)

Natural 
Language 
Inference
(NLI)

Fig. 3. The tasks in the GLUECoS benchmark

3.3 Improving the GLUECoS Benchmark
Upon initial testing, we noticed that the GLUECoS benchmark is not
an adequate differentiator of performance between code-switched
language models.

The first four evaluations in the GLUECoS benchmarks are token
classification tasks. These include NER, LID, and two POS evalua-
tions, one with the Google Universal Dependency dataset and one
from the ICON contest for Code-Mixed Indian Social Media Text.
In general, these evaluations cannot differentiate between different

models. All tested models perform extremely well these tasks, and
furthermore, different models have extremely similar performance
results on these tasks. It is likely that each evaluation has a set of
inputs for which the task is hard, and the remaining data for each
task is easily classifiable.
The QA and NLI evaluations have extremely little data. Partic-

ularly in case of the QA evaluation, this causes extremely high
variance in results. Different splits of the training, validation, and
testing data can produce test results both as low as 0% and over
70% accuracy. We addressed this by shuffling and re-separating the
data into 10 different train-val-test splits, a process known as ran-
dom sample validation. While this does not necessarily ensure the
average result produced over the samples will be a much more ac-
curate indicator of model performance, it allows us to compute the
variance across splits in order to provide a numerical indicator of
how reliable each result is and how significant differences between
results are for different models.

Finally, the original sentiment evaluation is a sequence classifica-
tion task with postitive, neutral, and negative classes. Because all
models trained on this evaluation collapse to outputting a single
class label, achieving very poor performance, we removed the neu-
tral class from the data. The resulting evaluation produces extreme
differences between different model architectures and potentially
significant differences between different fine-tunings of the same
pretrained model.

4 RESULTS

4.1 Experimental Setup
All experiments were run on a CMU LTI machine containing 2
Nvidia GTX 1070s. Experiments were run with Python 3.6.10 us-
ing an evaluation system based on the GLUECoS repository and
modified according to Section 3.2.

For fine-tuning language models on code-switched text, we used
Masked Language Model training with the following parameters:

• Learning rate: 5 ∗ 10−5
• Batch masking probability: 0.15
• Maximum sequence length: 512
• Epochs: 2
• Batch size: 2
• Gradient accumulation steps: 10

Weexperimentedwith different learning rates and training epochs
to attempt to have models learn more information from provided
datasets, but we found these parameters from Tarunesh et al. to be
the most effective [Tarunesh et al. 2021].

We used 3 pretrained models from HuggingFace.

• We refer to bert-base-multilingual-cased as mBERT.
• We refer to distilbert-base-multilingual-cased asmDis-
tilBERT.

• We refer to xlm-roberta-base as mRoBERTa.

We finetuned these models with several different datasets. -Sub
refers to models finetuned with a token substitution method. These
models received 20,360 sentences of WikiQA data in which 70%
of tokens were selected for replacement via a bilingual lexicon
into Hindi. -VACS refers to models finetuned with 20,360 sentences
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generated from VACS. -DOG refers to models finetuned with 48,465
sentences generated from the CMUDoG data, as discussed in Section
2.1.

4.2 Experimental Results
We first note that results for the token classification evaluations
in the GLUECoS benchmarks do not vary much between different
models. We found that all tested models were similar in performance
on all 4 of these tasks, as seen in Table 1. The exception to this trend
was the mRoBERTa model, which showed statistically significant
improvement on the POS ICON task. We believe that there may be
potential for fine-tunings of this model using code-switched data
to achieve even greater performances, but our compute resources
were insufficient to perform the fine-tuning process on this model.

We then note that for the question answering tasks, the standard
deviation of results on all models is extremely high. Thus, even
though there are large differences in performance (e.g. 4% between
mBERT-VACS and mBERT-DOG as seen in Table 3), there is likely
no statistically significant difference measured between the perfor-
mance of these two models.

We tested two versions of the sentiment analysis task. The three-
class sentiment analysis task (containing positive, neutral, and neg-
ative labels) has consistent results of approximately 45% accuracy.
This corresponds to a mode collapse in which the model almost
always outputs the neutral class label, which occurs with about 45%
frequency in the data. This is likely due to two causes. First, the
class imbalance in which the neutral class is by far the majority
class makes it more likely for models to output this label. Second,
the neutral class is commonly used in sentiment analysis tasks to
label not only sentences with neutral sentiment but also sentences
to which no sentiment label reasonably applies. It thus covers a
much wider variety of sentences, and sentences with unfamiliar sen-
timent markers may be grouped by default under neutral sentiment
in model predictions.
While removing the neutral class makes the sentiment analysis

task less representative of the real-world problem of SA, we found
that this produced a benchmark with stronger differentiating power.
The result two-class version of the sentiment analysis task has sig-
nificantly different results with different models. As seen in Table
3, the mRoBERTa model has much worse performance than the
mBERT and mDistilBERT based models. The mDistilBERT mod-
els show small improvement after finetuning with code-switched
data, though this is likely not statistically significant. We also note
that the mBERT model has high stanard deviation, but that this is
due to an outlier in the 10 samples of train-val-test splits rather
than consistently spread out results. We conclude that the resulting
2-class sentiment analysis task is the most discriminative of our
evaluations in determining what language models perform best with
code-switched data.

5 DISCUSSION AND CONCLUSIONS
We conclude that the current practice of reporting benchmark results
with only accuracy results can be extremely misleading and that
state-of-the-art achievements reported with the same practices may
not in fact be proper advancements in the field. We advocate for the

inclusion of quantitative measures of significance for differences
between results.

We also note that the primary focus of designing such evaluations
is to be able to differentiate model performance with respect to a
real-world task domain. Tasks that are too easy do not provide
valuable insights into how different tested models can potentially
improve task performance. Tasks that are too hard do not provide
insights into which models are performing better than others. We
thus note the need to design evaluations relative to the current
state-of-the-art capability in a field and to continually update those
evaluations to keep them relevant as models in the field improve.

6 FUTURE WORK
The primary avenue of future work for this project is to add more
differentiating evaluations with additional data.While the sentiment
analysis evaluation is now usable for differentiation, it is a single
evaluation with only around 10,000 samples. Increasing the amount
of data would ensure that models are not overfitting to this task.
Addingmore evaluationswould ensure thatmodels that are uniquely
suited to a particular evaluation (e.g., due to the training data used)
are not classified as disproportionately high performance despite
poor performance on other tasks or in other domains.
Another avenue of future work is developing new methods of

generating code-switched data that achieve higher performance on
the evaluation. Having better generative methods could create a
wider spread of values along the evaluation, giving a better picture
of how well the evaluation can distinguish different thresholds of
performance.
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